Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

# Oxonium 5-aminouracil-6-sulfonate hydrate 

G. Mazumder, ${ }^{\text {a }}$ M. De, ${ }^{\text {a }}{ }^{\text {S S. K. Mazumder }}{ }^{\text {a }}$ and A. Mukhopadhyay ${ }^{\text {b }}$<br>${ }^{\text {a Department of Materials Science, Indian Association for the Cultivation of Science, }}$ Jadavpur, Calcutta 700 032, India, and ${ }^{\text {b }}$ Department of Physics, University of Jadavpur, Jadavpur, Calcutta 700 032, India<br>Correspondence e-mail: msmd@mahendra.iacs.res.in

Received 17 October 2000
Accepted 14 December 2000
In the title compound, oxonium 5-amino-2,6-dioxo-1,2,3,6-tetrahydropyrimidine-4-sulfonate hydrate, $\mathrm{H}_{3} \mathrm{O}^{+} \cdot \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{3}-$ $\mathrm{O}_{5} \mathrm{~S}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$, the sulfonate group is in the anionic form and charge balance is provided by an oxonium cation, $\mathrm{H}_{3} \mathrm{O}^{+}$. Screw-related molecules overlap significantly and are hydrogen bonded to form a zigzag chain of the uracil skeleton along the direction of the $c$ screw axis. The partially stacked bases and their glide-related equivalents run parallel to the $a$ axis to form hydrophobic zones separated by hydrophilic zones built up by a network of hydrogen bonds.

## Comment

The structural analysis of the title compound, (I), is a continuation of our earlier work involving systematic conformational studies on nucleic acid constituents in the form of their derivatives and metal complexes to understand structurefunction relationships. The purpose of the present study is to understand the effect of substituents on the ring structure of the uracil base.

(I)

The bond lengths and angles of the uracil derivative (Fig. 1) are in close agreement with those of a neutral uracil base (Taylor et al., 1982). As expected, the uracil base is planar, with a maximum deviation of 0.014 (3) $\AA$ for C2. The orientation of the sulfonyl group with respect to the uracil base is given by torsion angles about the bond $\mathrm{C} 6-\mathrm{S} 1$ (Table 1). The torsion angles C5-C6-S1-O5 [55.0 (3) ${ }^{\circ}$ ] and C5-C6-S1-O6 [ $\left.-66.0(3)^{\circ}\right]$ indicate that the $\mathrm{S} 1-\mathrm{O} 5$ and $\mathrm{S} 1-\mathrm{O} 6$ bonds are staggered with respect to the base, while the torsion angle $\mathrm{N} 1-\mathrm{C} 6-\mathrm{S} 1-\mathrm{O} 7\left[-5.8(3)^{\circ}\right]$ indicates an eclipsed position
for the $\mathrm{S} 1-\mathrm{O} 7$ bond and brings the atom O 7 closer to the $\mathrm{N}-$ H group $[\mathrm{N} 1 \cdots \mathrm{O} 7=2.743(3) \AA]$ of the ring. This disposition is probably due to a weak electrostatic interaction between the $\mathrm{N}-\mathrm{H}$ group and the O 7 atom, which is further evidenced by the asymmetry of the exocyclic bond angles $\mathrm{N} 1-\mathrm{C} 6-\mathrm{S} 1$ and C5-C6-S1 of 116.5 (2) and $122.8(2)^{\circ}$, respectively. The three $\mathrm{S}-\mathrm{O}$ bond lengths, $\mathrm{S} 1-\mathrm{O} 5$ [1.443 (2) $\AA$ A $]$, $\mathrm{S} 1-\mathrm{O} 6$ [1.446 (2) Å] and S1-O7 [1.448 (2) A], are equal within three standard deviations, indicating that the sulfonate group $\left(\mathrm{SO}_{3}\right)$ is in the anionic form. The three angles $\mathrm{O} 5-\mathrm{S} 1-\mathrm{O} 6$ [114.13(5) ${ }^{\circ}$ ], O5-S1-O7 [114.58 (15) ${ }^{\circ}$ ] and $\mathrm{O} 6-\mathrm{S} 1-\mathrm{O} 7$ [112.89 (15) $\left.{ }^{\circ}\right]$, and the three angles O5-S1-C6 [105.48 (14) ${ }^{\circ}$, O6-S1-C6 [105.27 (14) ${ }^{\circ}$ ] and O7-S1-C6 [103.04 (14) ${ }^{\circ}$ ] have average values 113.9 (7) and $104.6(11)^{\circ}$, respectively; these deviations from the normal tetrahedral angles in sulfonate groups have been established by many accurate structure analyses; e.g. 112.9 and $106.7^{\circ}$ in the structure of taurine 2 aminoethyl sulfonic acid (Okaya, 1966), and 112.1 (2) and 106.6 (2) ${ }^{\circ}$ in hexaaquacobalt(II) bis(2-aminotoluene-4-sulfonate) (Gunderman et al., 1997). A search of the Cambridge Structural Database (Allen et al., 1991) has shown that the deformation of the sulfonate groups from ideal tetrahedral geometry is common. The N5-C5 bond length $[1.347$ (4) $\AA$ ] is close to the normal $\mathrm{C}-\mathrm{N}$ bond distances found in other neutral nucleic acid bases (Taylor et al., 1982).

The molecular packing and hydrogen-bonding scheme is shown in Fig. 2. The uracil bases are tilted at an angle of $24.9^{\circ}$ to the screw axis and the centroid of the ring structure of the base is $0.38 \AA$ away from this axis. Significant overlap is observed between the screw-related bases: the shortest intermolecular contacts between O 4 of one molecule and C 2 and O7 of the screw-related molecule at $\left(-x+2, \frac{1}{2}+y, \frac{1}{2}-z\right)$ are of 3.455 (4) and 3.104 (3) $\AA$, respectively, indicating that the screw-related bases are partially stacked. These bases are further linked by a hydrogen bond between N 1 and O 4 , forming a chain of uracil bases along the direction of the screw axis (Table 2 and Fig. 2). The partially stacked bases, together with their glide-related equivalents, run parallel to the $a$ axis and form hydrophobic zones separated by hydrophilic zones where the sulfonyl anions and $\mathrm{H}_{3} \mathrm{O}^{+}$cations, a water molecule, the amino N 5 atom and the ring N 3 atom form a network of hydrogen bonds. $\mathrm{O} 1 W$ is part of an $\mathrm{H}_{3} \mathrm{O}^{+}$cation which has three close neighbours; O7 (related by an inversion centre),

## Figure 1



An ORTEPII (Johnson, 1976) plot of the title molecule showing the atom labelling. Ellipsoids are drawn at the $30 \%$ probability level.

O 7 (screw-related) and $\mathrm{O} 2 W$, with $\mathrm{O} \cdots \mathrm{O}$ distances of 2.868 (4), 2.838 (4) and 2.871 (4) Å, respectively, and these are arranged in a fashion similar to that found in tris(1-phenacyl-2-pyridone) hydroxonium tetrafluoroborate (Zhukov et al., 1997) and hydronium 2-carboxybenzenesulfonate ( $\mathrm{Ng}, 1997$ ). $\mathrm{O} 2 W$ forms a bifurcated hydrogen bond to O 2 and O 6 through $\mathrm{H} 2 W A$ and also links to O 5 through $\mathrm{H} 2 W B$. These interactions generate an infinite three-dimensional network of cations, anions and water molecules.


Figure 2
A view approximately along the $c$ direction showing the extensive threedimensional hydrogen-bonded network linking $\mathrm{H}_{3} \mathrm{O}^{+}$cations, $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}^{-}$anions and water molecules. Hydrogen bonds are indicated by dashed lines.

## Experimental

The title compound was synthesized by the reaction of a hot aqueous solution of sulfuric acid and 5-aminouracil. The mixture was kept on a hot water bath for about 6 h and crystals were obtained after a few days at room temperature.

## Crystal data

$\mathrm{H}_{3} \mathrm{O}^{+} \cdot \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=243.20$
Monoclinic, $P 2_{1} / c$
$a=10.579$ (2) Å
$b=12.104$ (2) $\AA$
$c=7.003(2) \AA$
$\beta=102.26(3)^{\circ}$
$V=876.3(3) \AA^{3}$
$Z=4$

## Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega-2 \theta$ scans
Absorption correction: empirical
via $\psi$ scan (North et al., 1968)
$T_{\text {min }}=0.419, T_{\text {max }}=0.482$
1551 measured reflections
1551 independent reflections

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.139$
$S=0.922$
1551 reflections
138 parameters
H atoms: see below

$$
\begin{aligned}
& D_{x}=1.843 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{Cu} K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=20-30^{\circ} \\
& \mu=3.644 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.35 \times 0.20 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

> 1474 reflections with $I>2 \sigma(I)$
> $\theta_{\max }=69.72^{\circ}$
> $h=0 \rightarrow 12$
> $k=-14 \rightarrow 0$
> $l=-8 \rightarrow 8$
> 3 standard reflections $\quad$ every 100 reflections $\quad$ intensity decay: negligible

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0935 P)^{2}\right. \\
& \quad+1.9742 P] \\
& \quad \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.55 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.50 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0169(16)
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

| S1-O5 | $1.443(2)$ | S1-O7 | $1.448(2)$ |
| :--- | :---: | :--- | :--- |
| S1-O6 | $1.446(2)$ | N5-C5 | $1.347(4)$ |
|  |  |  |  |
| O5-S1-O6 | $114.13(15)$ | O6-S1-C6 | $105.27(14)$ |
| O5-S1-O7 | $114.58(15)$ | O7-S1-C6 | $103.04(14)$ |
| O6-S1-O7 | $112.89(15)$ | $\mathrm{N} 1-\mathrm{C} 6-\mathrm{S} 1$ | $116.5(2)$ |
| O5-S1-C6 | $105.48(14)$ | $\mathrm{C} 5-\mathrm{C} 6-\mathrm{S} 1$ | $122.8(2)$ |
|  |  |  |  |
| C5-C6-S1-O5 | $55.0(3)$ | $\mathrm{N} 1-\mathrm{C} 6-\mathrm{S} 1-\mathrm{O} 7$ | $-5.8(3)$ |
| C5-C6-S1-O6 | $-66.0(3)$ |  |  |

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ}{ }^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 4^{\text {i }}$ | 0.86 | 2.08 | 2.890 (4) | 158 |
| N3-H3 $\cdots$ O $1 W^{\text {ii }}$ | 0.86 | 2.18 | 2.940 (4) | 148 |
| $\mathrm{N} 5-\mathrm{H} 5 \mathrm{~B} \cdots \mathrm{O} 2^{\text {iii }}$ | 0.86 | 2.10 | 2.671 (3) | 123 |
| N5-H5A $\cdots$ O2W | 0.86 | 2.54 | 3.024 (4) | 116 |
| $\mathrm{O} 1 W-\mathrm{H} 1 W A \cdots \mathrm{O} 7^{\text {iv }}$ | 0.85 | 2.14 | 2.867 (4) | 144 |
| $\mathrm{O} 1 W-\mathrm{H} 1 W B \cdots \mathrm{O} 2 W$ | 0.83 | 2.28 | 2.871 (4) | 129 |
| $\mathrm{O} 1 W-\mathrm{H} 1 W C \cdots \mathrm{O}^{\text {v }}$ | 0.85 | 1.99 | 2.838 (4) | 177 |
| $\mathrm{O} 2 W-\mathrm{H} 2 W A \cdots \mathrm{O}^{\text {vi }}$ | 0.86 | 2.25 | 2.909 (4) | 134 |
| $\mathrm{O} 2 W-\mathrm{H} 2 W A \cdots \mathrm{O} 2^{\mathrm{iii}}$ | 0.86 | 2.38 | 2.962 (4) | 125 |
| $\mathrm{O} 2 W-\mathrm{H} 2 W B \cdots \mathrm{O}{ }^{\text {vii }}$ | 0.86 | 2.15 | 2.976 (4) | 159 |

Symmetry codes: (i) $2-x, y-\frac{1}{2}, \frac{1}{2}-z$; (ii) $1+x, \frac{3}{2}-y, \frac{1}{2}+z$; (iii) $2-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iv) $1-x, 1-y,-z$; (v) $1-x, \frac{1}{2}+y,-\frac{1}{2}-z$; (vi) $x, \frac{3}{2}-y, z-\frac{1}{2}$; (vii) $x, \frac{3}{2}-y, \frac{1}{2}+z$.

H atoms attached to N atoms were fixed geometrically and refined isotropically using a riding model with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$ for ring nitrogens and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{N})$ for the amino group. H atoms of the water molecules were located from a difference Fourier synthesis and refined isotropically with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$ using restraints for $\mathrm{O}-\mathrm{H}$ bond distances and $\mathrm{H}-\mathrm{O}-\mathrm{H}$ angles. The numbering scheme shown in Fig. 1 is consistent with the rules of the IUPAC-IUB Commission on Biochemical Nomenclature (IUPAC-IUB, 1983).

Data collection, cell refinement and data reduction: CAD-4 Software (Enraf-Nonius, 1989); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1983).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1438). Services for accessing these data are described at the back of the journal.

## References

Allen, F. H., Davies, J. E., Galloy, J. J., Johnson, O., Kennard, O., Macrae, C. F., Mitchell, E. M., Mitchell, G. F., Smith, J. M. \& Watson, D. G. (1991). J. Chem. Inf. Comput. Sci. 31, 187-204.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Gunderman, B. J., Dubey, S. N. \& Squattrito, P. J. (1997). Acta Cryst. C53, 17-19. IUPAC-IUB Joint Commission on Biochemical Nomenclature (1983). Eur. J. Biochem. 131, 9-15.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Ng, S. W. (1997). Acta Cryst. C53, 633-634.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359. Okaya, Y. (1966). Acta Cryst. 21, 726-735.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Taylor, R. \& Kennard, O. (1982). J. Am. Chem. Soc. 104, 3209-3212.
Zhukov, S. G., Rybakov, V. B., Babaev, E. V., Paseshnichenko, K. A. \& Schenk, H. (1997). Acta Cryst. C53, 1909-1911.

